Jupiter

Jupiter est ainsi officiellement désignée, en français comme en anglais, d’après le dieu romain Jupiter, assimilé au dieu grec Zeus.

Le symbole astronomique de la planète était « ♃ », qui serait une représentation stylisée du foudre de Jupiter, ou bien serait dérivé d’un hiéroglyphe ou, comme cela ressortirait de certains papyrus d’Oxyrhynque, de la lettre grecque zêta, initiale du grec ancien Ζεύς (Zeús). L’Union astronomique internationale recommande de substituer au symbole astronomique « ♃ » l’abréviation « J », correspondant à la lettre capitale J de l’alphabet latin, initiale de l’anglais Jupiter.

Visible à l’œil nu dans le ciel nocturne, Jupiter est habituellement le quatrième objet le plus brillant de la voûte céleste, après le Soleil, la Lune et Vénus. Parfois, Mars apparaît plus lumineuse que Jupiter et, de temps en temps, Jupiter apparaît plus lumineuse que Vénus. Jupiter était au périhélie le 17 mars 2011 et à l’aphélie le 17 février 2017.

Comme sur les autres planètes gazeuses, des vents violents, de près de 600 km/h, parcourent les couches supérieures de la planète. La Grande Tache rouge est un anticyclone, une zone de surpression observée depuis au moins le XVIIe siècle. Trois fois plus grande que la Terre au début du XXe siècle, elle a rétréci pour devenir de taille comparable un siècle plus tard.

Regroupant Jupiter et les objets se trouvant dans sa sphère d’influence, le système jovien est une composante majeure du Système solaire externe. Il comprend notamment les nombreuses lunes de Jupiter dont les quatre lunes galiléennes — Io, Europe, Ganymède et Callisto — qui, observés pour la première fois en 1610 par Galilée au moyen d’une lunette astronomique de son invention, sont les premiers objets découverts par l’astronomie télescopique. Il comprend aussi les anneaux de Jupiter, un système d’anneaux planétaires observés pour la première fois, en 1979, par la sonde spatiale américaine Voyager 1.

L’influence de Jupiter s’étend, au-delà du système jovien, à de nombreux objets dont les astéroïdes troyens de Jupiter.

La masse jovienne est une unité utilisée pour exprimer la masse d’objets substellaires tels que les naines brunes.

La haute atmosphère de Jupiter est composée à 93 % d’hydrogène et 7 % d’hélium en nombre d’atomes, ou à 86 % de dihydrogène et 13 % d’hélium en nombre de molécules. En masse, l’atmosphère est approximativement constituée de 75 % d’hydrogène et de 24 % d’hélium, le pourcent restant étant apporté par divers autres éléments et composés chimiques (traces de méthane, de vapeur d’eau, d’ammoniac, très petites quantités de carbone, d’éthane, de sulfure d’hydrogène, de néon, d’oxygène, d’hydrure de phosphore et de soufre). La couche la plus externe de la haute atmosphère contient des cristaux d’ammoniac.

Par mesures infrarouges et ultraviolettes, des traces de benzène et d’autres hydrocarbures ont également été détectées12. L’intérieur de Jupiter contient des matériaux plus denses et la distribution par masse est de 71 % d’hydrogène, 24 % d’hélium et 5 % d’autres éléments.

Les proportions d’hydrogène et d’hélium dans la haute atmosphère sont proches de la composition théorique de la nébuleuse planétaire qui aurait donné naissance au Système solaire. Néanmoins, le néon n’y est détecté qu’à hauteur de vingt parties par million en termes de masse, un dixième de ce qu’on trouve dans le Soleil. L’hélium y est également en défaut, mais à un degré moindre. Cette absence pourrait résulter de la précipitation de ces éléments vers l’intérieur de la planète. Les gaz inertes lourds sont deux à trois fois plus abondants dans l’atmosphère de Jupiter que dans le Soleil.

Par spectroscopie, on pense que Saturne possède une composition similaire, mais qu’Uranus et Neptune sont constituées de beaucoup moins d’hydrogène et d’hélium. Cependant, aucune sonde n’ayant pénétré l’atmosphère de ces géantes gazeuses, les données d’abondance des éléments plus lourds ne sont pas connues.

Jupiter est 2,5 fois plus massive que toutes les autres planètes du Système solaire réunies, tellement massive que son barycentre avec le Soleil est situé à l’extérieur de ce dernier, à environ 1,068 rayon solaire du centre du Soleil. Par ailleurs, son diamètre est 11 fois plus grand que celui de la Terre (environ 143 000 km) et on pourrait placer environ 1 322 corps de la taille de cette dernière dans le volume occupé par la géante gazeuse18[réf. insuffisante]. En revanche, la densité de Jupiter n’est que le quart de celle de la Terre (0,240 fois, précisément) : elle n’est donc que 318 fois plus massive que cette dernière.

Cette masse a eu une grande influence gravitationnelle sur la formation du Système solaire : la plupart des planètes et des comètes de courte période sont situées près de Jupiter et les lacunes de Kirkwood de la ceinture d’astéroïdes lui sont dues en grande partie.

Si Jupiter était plus massive, on pense que son diamètre serait plus petit. L’intérieur de la planète serait plus comprimé par une plus grande force gravitationnelle, décroissant sa taille. Par conséquent, Jupiter posséderait le diamètre maximal d’une planète de sa composition et de son histoire. La planète a parfois été décrite comme une « étoile ratée », mais il faudrait qu’elle possède 13 fois sa masse actuelle pour démarrer la fusion du deutérium et être cataloguée comme une naine brune et 75 fois pour devenir une étoile. La plus petite naine rouge connue est seulement 30 % plus volumineuse que Jupiter.

Des exoplanètes beaucoup plus massives que Jupiter ont été découvertes. Ces planètes pourraient être des géantes gazeuses semblables à Jupiter, mais pourraient appartenir à une autre classe de planètes, celle des Jupiter chauds, parce qu’elles sont très proches de leur étoile primaire.

Jupiter rayonne plus d’énergie qu’elle n’en reçoit du Soleil. La quantité de chaleur produite à l’intérieur de la planète est presque égale à celle reçue du Soleil. Le rayonnement additionnel est généré par le mécanisme de Kelvin-Helmholtz, par contraction adiabatique. Ce processus conduit la planète à rétrécir de 2 cm chaque année. Lorsque Jupiter s’est formée, elle était nettement plus chaude et son diamètre était double.

10
Jan
2014